
3̅ 

𝜏 = (
𝜏11 0 0
0 𝜏11 0
0 0 𝜏33

). 

Thus, vector components of the electric field and of the electric current are connected by the 

following relation: 

(
𝐽1

𝐽2

𝐽3

) = (
𝜏11 0 0
0 𝜏11 0
0 0 𝜏33

) (
𝐸1

𝐸2

𝐸3

) = (
𝜏11𝐸1

𝜏11𝐸2

𝜏33𝐸3

), 

𝐸

and a transverse voltage will appear. 

In case where the vectors 𝐽  and ⃗⃗  are not parallel, i.e., where the electric field is not 
directed along the axis of the beam, a transverse voltage appears in the bar. 

It is possible to show that there exist certain directions, cutting the bar at which will lead to 

parallel directions of the electric field and the electric current. At these directions, the 

transverse voltage will not appear in the system: 

i) When the electric field is directed along the principal x3 axis, i.e. 𝐸⃗⃗ = (0,0, 𝐸3):

𝐽 = (
0
0

𝜏33𝐸3

) = 𝜏33 ⋅ (
0
0

𝐸3

) = 𝜏33𝐸⃗⃗

ii) When the electric field is directed along any direction perpendicular to the 𝑥3 axis,

i.e. 𝐸⃗⃗ = (𝐸1, 𝐸2, 0):

𝐽 = (
𝜏11𝐸1

𝜏11𝐸2

0
) = 𝜏11 ⋅ (

𝐸1

𝐸2

0
) = 𝜏11𝐸⃗⃗

In all other cases, the electric current is not parallel to the electric field. 

To conclude, the transverse voltage does not appear when the thin bar is cut in such a

way that the longer dimension be either parallel or perpendicular to the symmetry axis 

Exercises 10, 29.04.2025  Solutions

10.1.

When the voltage is applied to the top and bottom surfaces of the bar, the current will flow 

along the axis of the beam. At the same time, the electric field generated at the application of 

the voltage, is not necessarily directed parallel to the axis of the beam. This can be shown 

writing the tensor of conductivity for the material considered in the problem. In the 

crystallographic reference frame, where 𝑂𝑥3 axis is aligned with the  symmetry axis, the 

conductivity tensor has the form (see Symmetry Tables): 



10.2
Experimentally, the heat capacity of the specimen is sought as 

𝐶(exp) =
δ𝑄

δ𝑇
To find the relation between 𝛿𝑄 and 𝛿𝑇, we will use the constitutive equations written for 

absent electric field 𝐸𝑖: 

𝜀𝑖 = 𝑠𝑖𝑗𝜎𝑗 + 𝛼𝑖𝛿𝑇, 

𝛿𝑄 = 𝑇𝛼𝑖𝜎𝑖 + 𝐶𝛿𝑇. 

In case (a), the sample is mechanically free, implying all 𝜎𝑖 = 0. Then, 𝛿𝑄 = 𝐶𝛿𝑇,

and 

𝐶(𝑎) =
δ𝑄

δ𝑇
= 𝐶. 

In case (b), the sample is kept mechanically free in 𝑥1 and 𝑥2 directions, implying 

𝜎1 = 𝜎2 = 𝜎4 = 𝜎5 = 𝜎6 = 0, and 𝜎3 ≠ 0. The constitutive equation for 𝛿𝑄 is simplified into: 

𝛿𝑄 = 𝑇𝛼3𝜎3 + 𝐶𝛿𝑇. 

To find 𝜎3, we use the constitutive equation for 𝜀3 = 0, which must not change during the 

measurement: 

𝜀3 = 𝑠33𝜎3 + 𝛼3𝛿𝑇 = 0   ⇒    𝜎3 = −
𝛼3

𝑠33
𝛿𝑇, 

𝛿𝑄 = 𝑇𝛼3𝜎3 + 𝐶𝛿𝑇 = (𝐶 − 𝑇
𝛼3

2

𝑠33
) 𝛿𝑇, 

𝐶(𝑏) =
δ𝑄

δ𝑇
= 𝐶 − 𝑇

𝛼3
2

𝑠33
. 

Thus, in (a) and (b) the measured heat capacities are different. Specifically, 

𝐶(𝑏) − 𝐶(𝑎)

𝐶(𝑎)
= −

𝑇𝛼3
2

𝐶𝑠33
= −

300 ⋅ (3.5 × 10−5)2

2.42 × 106 ⋅ 15.7 × 10−12
= −0.0097 

The measured difference between heat capacities is less than 1% and, consequently, the 

impact of mechanical conditions on the heat capacity can be neglected. 
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